20 resultados para stratum corneum

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the International Indian Ocean Expedition (1964/65) sediment cores were taken on six profiles off the western coast of the Indian Subcontinent. These profiles run approximately perpendicular to the coast, from the deep-sea over the continental slope to the continental shelf. Additional samples and cores were taken in a dense pattern in front of the delta of the Indus River. This pattern of sampling covered not only marine sediments, but also river and beach sediments in Pakistan. The marine samples were obtained with piston, gravity and box corers and by a Van Veen grab sampler. The longest piston core is about 5 meters long. 1. Distribution of the elements on the sediment surface The area of maximal carbonate values (aprox. 80-100% CaCO3) essentially coincides with the continental shelf. The highest Sr values were observed largely within this area, but only in the vicinity of the Gulf of Cambay. Mainly the aragonitic coprolites are responsible for those high Sr contents. The Mg contents of the carbonates are comparatively low; surprisingly enough the highest Mg concentrations were also measured in the coprolites. The maximum contents of organic matter (Core) were found along the upper part of the continental slope. They coincide with the highest porosity and water content of the sediments. Frequently the decomposition of organic matter by oxydation is responsible for the measured Corg contents. On the other side the quantity of originally deposited organic material is less important in most cases. The enrichment of the "bauxitophile" elements Fe, Ti, Cr and V in the carbonate- and quartz-free portions of the sediments is essentially due to the influence of coarse terrigenous detritus. For the elements Mn, Ni and Cu (in per cent of the carbonateand quartz-free sediment) a strong enrichment was observed in the deep-sea realm. The strong increase in Mn toward the deep-sea is explained by authigenesis of Mn-Fe-concretions. Mn-nodules form only under oxydizing conditions which obviously are possible only at very low rates of deposition. The Mg, B and, probably also Mn contents in the clay minerals increase with increasing distance from the continent. This can be explained by the higher adsorption of those elements from sea water because of increasing duration of the clay mineral transport. The comparison of median contents of some elements in our deep-sea samples with deep-sea sediments described by TUREKIAN & WEDEPOHL (1961) shows that clear differences in concentration exist only in the case of "bauxitophile" elements Cr and Be. The Cr and Be contents show a clear increase in the Indian Ocean deep-sea samples compared to those described by TUREKIAn & WEDEPOHL (1961) which can obviously be attributed to the enrichment in the lateritic and bauxitic parent rocks. The different behaviour of the elements Fe, Ti and Mn during decomposition of the source rocks, transport to the sea and during oxydizing and reducing conditions in the marine environment can be illustrated by Ti02/Fe and MnO/Fe ratios. The different compositions of the sediments off the Indus Delta and those of the remaining part of the area investigated are characterized by a different distribution of the elements Mn and Ti. 2. Chemical inhomogenities in the sediments Most longer cores show 3 intervals defined by chemical and sedimentological differences. The top-most interval is coarse-grained, the intermedial interval is fine grained and the lower one again somewhat coarser. At the same time it is possible to observe differences from interval to interval in the organogenic and detrital constituents. During the formation of the middle interval different conditions of sedimentation from those active during the previous and subsequent periods have obviously prevailed. Looking more closely at the organogenic constituents it is remarkable that during the formation of the finer interval conditions of a more intensive oxydation have prevailed that was the case before and after: Core decreases, whereas P shows a relative increase. This may be explained by slower sedimentation rate or by a vertical migration of the oxygen rich zone of the sea-water. The modifications of the elements from minerals in detrital portion of the sediments support an explanation ascribing this fact to modifications of the conditions of denudation and transportation which can come about through a climatic change or through tectonic causes. The paleontological investigations have shown (ZOBEL, in press) that in some of the cores the middle stratum of fine sedimentation represents optimal conditions for organic life. This fact suggests also oxydizing conditions during the sedimentation of this interval. In addition to the depositional stratification an oxydation zone characterized by Mn-enrichment can be recognized. The thickness of the oxidation zone decreases towards the coast and thins out along the middle part of the continental slope. At those places, where the oxydation zone is extremely thin, enrichment of Mn has its maximum. This phenomenon can probably be attributed to the migration of Mn taking place in its dissociated form within the sediment under reducing conditions. On the other side this Mn-migration in the sediment does not take place in the deep-sea, where oxydizing conditions prevail. 3. Interstitial waters in the sediments Already at very small core depths, the interstitial waters have undergone a distinct modification compared with the overlying sea water. This distinct modification applies both to total salinity and to the individual ions. As to the beginning of diagenesis the following conclusions can be drawn: a) A strong K-increase occurs already at an early stage. It may be attributable to a diffusion barrier or to an exchange of Mg-ions on the clays. Part of this increase may also originate from the decomposition of K-containing silicates (mica and feldspars). A K-decrease owing to the formation of illite (WEAVER 1967), however, occurs only at much greater sediment depth. b) Because of an organic protective coating, the dissolution of carbonate is delayed in recent organogenic carbonates. At the same time some Ca is probably being adsorbed on clay minerals. Consequently the Ca-content of the interstitial water drops below the Ca-content of the sea water. c) Already at an early stage the Mg adsorption on the clays is completed. The adsorbed Mg is later available for diagenetic mineral formations and transformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The International Polar Year (IPY) Inuit Health Survey provided an opportunity to compare dietary and body mass index (BMI) data with data collected a decade earlier for the same communities. Study design: A dietary survey included 1,929 randomly selected participants aged 15 years or older, selected from 18 Inuit communities in 1998-1999. The IPY survey included 2,595 randomly selected participants aged 18 years or older, selected from 36 Inuit communities in 2007-2008. Data from the same 18 communities included in both surveys were compared for adults 20 years and older. Methods: Twenty-four-hour dietary recall data were analysed to assess the percentage of energy from traditional and market foods by sex and age groups. Body mass index (BMI) was assessed to establish the prevalence of obesity by sex and age groups in both surveys. Results: There was a significant decrease (p<=0.05) in energy contribution from traditional food and a significant increase in market food consumption over time. Sugar-sweetened beverages, chips and pasta all increased as percentages of energy. BMI increased overall for women and for each age stratum evaluated (p<0.05). Conclusion: The nutrition transition continues in the Canadian Arctic with a concurrent increase in BMI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in January/February 2011 were determined for 38 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM17/3 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 38 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in October 2011 were determined for 22 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM19/1b cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 22 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This master thesis describes the geological mapping of an 8 km**2 area of the 300 m high elevation HEBER in Northern Germany which is part of the Rhüdener Sattel (Harzvorland). The geology consists of mesozoic rocks from Buntsandstein to Keuper; major parts are Muschelkalk, partly covered with a thin layer of Quaternary loess. The map includes measurements of strike and dip in various outcrops, drafting a scetch of the probable tectonic structure of Rühdener Sattel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores recovered from three sites of Leg 116 were studied for radiolarians. Generally, radiolarians were absent from most samples prepared for examination. Moderate to well-preserved radiolarian assemblages are found only in the uppermost one or two cores that were the focus of this study. All of the radiolarian assemblages in the upper cores belong to the Buccinosphaera invaginata Zone of latest Quaternary age. However, there is one stratum where a few Miocene radiolarians are reworked into the modern assemblages. Local seamounts are suggested sources for the reworked radiolarians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerial surveys of narwhals (Monodon monoceros) were conducted in the Canadian High Arctic during the month of August from 2002 to 2004. The surveys covered the waters of Barrow Strait, Prince Regent Inlet, the Gulf of Boothia, Admiralty Inlet, Eclipse Sound, and the eastern coast of Baffin Island, using systematic sampling methods. Fiords were flown along a single transect down the middle. Near-surface population estimates increased by 1.9%-8.7% when corrected for perception bias. The estimates were further increased by a factor of approximately 3, to account for individuals not seen because they were diving when the survey plane flew over (availability bias). These corrections resulted in estimates of 27 656 (SE = 14 939) for the Prince Regent and Gulf of Boothia area, 20 225 (SE = 7285) for the Eclipse Sound area, and 10 073 (SE = 3123) for the East Baffin Island fiord area. The estimate for the Admiralty Inlet area was 5362 (SE = 2681) but is thought to be biased. Surveys could not be done in other known areas of occupation, such as the waters of the Cumberland Peninsula of East Baffin, and channels farther west of the areas surveyed (Peel Sound, Viscount Melville Sound, Smith Sound and Jones Sound, and other channels of the Canadian Arctic archipelago). Despite these probable biases and the incomplete coverage, results of these surveys show that the summering range of narwhals in the Canadian High Arctic is vast. If narwhals are philopatric to their summering areas, as they appear to be, the total population of that range could number more than 60 000 animals. The largest numbers are in the western portion of their summer range, around Somerset Island, and also in the Eclipse Sound area. However, these survey estimates have large variances due to narwhal aggregation in some parts of the surveyed areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM/m**2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind./m**3) in August. Algal bloom stage, chlorophyll-a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus (Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological ''hot-spots'' were associated with Arctic communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in September 2010 were determined for 10 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the RRS Discovery D356 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 10 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta(depth bot[m]-depth top [m]).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IIchthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in December 2009 were determined for 22 stations in the Benguela upwelling system, based on oblique Multinet hauls during the FRS Africana cruise AFR258. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 22 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. Densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in March 2008 were determined for 32 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM07/3 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 32 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in September 2010 were determined for 10 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the RRS Discovery D356 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 10 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta(depth bot[m]-depth top [m]).

Relevância:

10.00% 10.00%

Publicador: